*disclaimer
1197166
R
決定木 Decision Tree Analysis
caret
confusionMatrix()
- caretパッケージに含まれる
- 混同行列(予測値と観測値の対応表)をもとに分類の精度を出す
CM.table <- table(predict(モデル), データ$観測値) CM.result <- caret::confusionMatrix(CM.table) print(CM.result)
C2, C3, JPの分類の例
- モデル <- ctree(観測値 ~ 説明変数)
CM.table <- table(predict(モデル), データ$観測値)
CM.table
C2 C3 JP
C2 35 7 0
C3 3 19 1
JP 0 6 34
CM.result <- caret::confusionMatrix(CM.table)
print(CM.result)
Confusion Matrix and Statistics
C2 C3 JP
C2 35 7 0
C3 3 19 1
JP 0 6 34
Overall Statistics
Accuracy : 0.8381
95% CI : (0.7535, 0.9028)
No Information Rate : 0.3619
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.7552
Mcnemar's Test P-Value : NA
Statistics by Class:
Class: C2 Class: C3 Class: JP
Sensitivity 0.9211 0.5938 0.9714
Specificity 0.8955 0.9452 0.9143
Pos Pred Value 0.8333 0.8261 0.8500
Neg Pred Value 0.9524 0.8415 0.9846
Prevalence 0.3619 0.3048 0.3333
Detection Rate 0.3333 0.1810 0.3238
Detection Prevalence 0.4000 0.2190 0.3810
Balanced Accuracy 0.9083 0.7695 0.9429
https://sugiura-ken.org/wiki/